
Proof-of-power, using a swarm to select miners through
majority consensus

ABSTRACT: In 2008, Craig Wright published the Bitcoin whitepaper[1], and the idea to use
proof-of-work as a trusted authority, provably distributed. This Nakamoto consensus allowed the
Bitcoin ledger to extend itself in a way that was resilient to censorship as well as to servers
being shut down, and in a way where as the security of the network grew, the number of users
and therefore the value of the network also grew following Metcalfe´s Law. Bitcoin was the
beginning of what can be broadly defined as “network-states”[2], successors to the nation-state
consensus.

Proof-of-power as a third generation of the Nakamoto consensus, is a natural evolution of the
second generation, proof-of-stake, and resolves the issues that people have with previous
systems[3], perfectly combining the best of the legacy system of representative democracy, with
the advances in permissionless state-technology, market economics and the non-aggression
principle (NAP). The overall social consensus is very simple, equivalent to proof-of-stake, but
using people-vote instead of stake, validators are "powered" with people-vote using
proof-of-suffrage and proof-of-personhood.

Note that proof-of-power is not democracy, there is no mob rule, rather, a permissionless,
unbiased state, for what Paul Emile de Puydt conceptualized as Panarchy in 1860[4], a free
market for government.

Casper with proof-of-power, “representative consensus-by-bet”

Proof-of-power is interchangeable with proof-of-stake overall, and as an example, it can run on
Vlad Zamfir’s Casper. In “representative consensus-by-bet”, people “power up” validators using
proof-of-suffrage, and proof-of-personhood, and operate as a swarm or self-organizing
collective. The validators then bet with their power, in the consensus-by-bet game that Zamfir
invented. Mining rewards are shared between validators, and the people they represent.

The Nakamoto consensus and proof-of-work as miners showing
consent (“to feel with a state”)

The Nakamoto consensus (Wright, 2008), is a way to signal consent, and to come together to
form a social consensus, not for the the technology itself to agree on a state, but for people to
agree on which state to use. Like the Bitcoin whitepaper[1] says, the longest chain not only
serves as proof of the sequence of events witnessed, but proof that it came from the largest
pool of CPU power. The main innovation behind Bitcoin and blockchain technology was how to
do social consensus, using proof-of-work as a social signal to know which state to organize
around, similar to the rhetorical capacity of a president, a shaman, or the display of dominance
from a monopoly on violence.

https://en.wikipedia.org/wiki/Expressions_of_dominance
https://en.wikipedia.org/wiki/Expressions_of_dominance
https://en.wikipedia.org/wiki/Monopoly_on_violence
https://en.wikipedia.org/wiki/Monopoly_on_violence

The reward incentive (“mining reward”) makes miners feel with a certain state, and it makes
them open-minded towards it, similar to how flowers use pollen to reward bees, allowing a free
market for governance services (permissionless state) which is not possible without the use of
technology because of genetic bias. With proof-of-power, a third generation of the Nakamoto
consensus, the reward incentive is distributed via proof-of-suffrage and proof-of-personhood, to
potentially every human on the planet, for maximum oversight of the state (that it follows the
protocol) as well as opt-in, explicit, consent to distribute responsibility.[5]

Proof-of-power as a new, voluntary, social contract
Social contracts, as a tool, are cybernetic really, a way to extend social cognition through the
use of external state and mediation. Proof-of-power is the first social contract with actual
consent, and makes it possible to signal, voluntarily, that you choose to coordinate around a
state, allowing the production of global consensus for a “network-state” that can be used to
extend social cognition (i.e attention) through the use of governance.

Pseudonym Pairs: A foundation for proof-of-personhood in
the web 3.0 jurisdiction

ABSTRACT: Pseudonym Pairs is a dApp for global proof-of-personhood, through monthly
pseudonym events that last 20 minutes, where every single person on Earth is randomly paired
together with another person, 1-on-1, to verify that the other is a person, in a
pseudo-anonymous context. The events provide NYM tokens, global personhood tokens,
untraceable from month to month and disposable, a sort of “temporary access tokens” similar to
festival bracelets. The proof-of-personhood is that you are with the same person for the whole
event.

https://www.youtube.com/watch?v=qtIHRnnsTwE

1-on-1 verification of (pseudo-anonymous) personhood

Within the 1-on-1 pairs, people can socialize as they want, and can be seen as being employed
in government positions, expected to stay within the pair for the entire duration of the
pseudonym event. The 1-on-1 pairs is the standard organization, requiring mutual verification. In
the case of a problem, such as a bot attacker, or, a person not showing up, people can break up
their pair, to be assigned to be verified by another pair (2-on-1), similar to how people are
verified at the “virtual border”. (see below)

How to opt-in to Pseudonym Pairs

The population is used to secure a "virtual border" around the network, and “border tokens”
(BDR) can be bought to apply at the “virtual border” and meet a random pseudonym pair, that
verify the person that opts-in. The “border tokens” are distributed through the population, each
person can issue 1 BDR, and each time BDR is issued, the ability to issue one more BDR is
given to a random person within the pseudonym pool, distributing the ability to invite new people
onto the population as a whole, making it possible for the network to accept new people multiple
times its population size, so that it can grow from 0 to potentially 5 billion people.

Example of how to bootstrap a Pseudonym Pairs network
The network, as a collective or swarm, can choose how fast it wants to grow, based on what
they discover is secure enough. If 6 new people are allowed in per pair, then the growth is 4-fold
each month, and the population is 2*4^n after n events, starting with a single pair, 2*4^0 = two
people. With that growth rate, you get to (2*)1 million people after 10 events, and (2*)1 billion
after 15 events.

The growth rate can be decreased gradually, approaching zero as the entire global population
has been accounted for. For example, 4-fold growth for 10 events up to 2 million people, then
2-fold another 10 events, 2 billion people within 20 events. Then, grow with 1 person per pair for
4 events, 1.5-fold, and the network grows to 10 billion people within 24 events, 2 years exactly.

The population sorts themselves into pairs

The pair sorting is invoked by each person, people are sorted into two lists (together forming
pairs), and the lists are continuously shuffled with each new person who invokes sortMe(). This
sorting mechanism keeps the computational cost per person low, and forms complete pairs
regardless of how many of the people who registered choose to commit with sortMe().

function sortMe() atTime(0, pseudonymEvent) {

 uint8 idx;

 uint totalSorted = pairingUtility[0].counter + pairingUtility[1].counter;

 idx = totalSorted % 2;

 pairingUtility[idx].counter++;

 totalSorted++;

 pseudonymID[msg.sender] = totalSorted;

 uint pos = pairingUtility[idx].counter;

 uint randomNumber = 1 + labyrinth.generateRandomNumber() % (pos - 1);

 pairingUtility[idx].index[pos].push(randomNumber);

 pairingUtility[idx].index[randomNumber] = pos;

}

You simply sort yourself into a pair, at any time from the end of the previous event, up until the
next event, and this will cost you a tiny amount of GAS. Every other person is sorted in
pairingUtility[1], instead of pairingUtility[0], combined, a list of pairs when the event begins.
When you call SortMe(), the pairingUtility counts how many have been sorted in the
pairingUtility you are assigned to, and then randomly places you in the position another person
had, moving that other person to the end of the list. Over time, the pairs get shuffled.

Profitability of collusion attacks
The only attack vector I see in Pseudonym Pairs, collusion attacks, they follow an inverse
square law, the return decreases more and more the fewer people attack the network.

If 25% of the population attacks the network, they get = 6.25% bots, if 10% of the population

attacks the network, = 1%.

The colluders get colluders/population more than they get otherwise. If 10% of the entire human
population collude and together attack the network, they get 1/10 more than baseline, if 5% of
the entire population attack the network, they get 1/20, 5% (0.05x personhood tokens per
attacker, exactly how that is divided between the attackers, they get to decide for themselves.)

The personhood tokens are mixed, making them untraceable
When the pseudonym event is over and people have been verified, all personhood tokens are
mixed, through the entire population. The mixing is simple, people continuously join mixers,
incrementally increasing the number of mixers over time as people invoke joinMixer(), in mixers
of 4 or so people that use ring signatures, and a personhood token is issued to their new public
key, and registration for the next event with another new key (keys from two separate mixers.)

Scheduling the Pseudonym Event
The Pseudonym Event is global, and singular, and so to be fair, the event is scheduled to a
random hour, and cycles over 24 hours. An example schedule, that fits with prior norm systems,
is to happen on weekends in the 7-day week, 13 months with 28 days. The event could be set
for 07:00 on Saturday 22 December (UTC), which is 21:00 Saturday UTC+14:00, the earliest
time zone on Earth (areas in this zone are the first to see a new day), and on a random hour
that then varies from 21:00 Saturday to 21:00 Sunday UTC+14:00, 07:00 Saturday to 07:00
Sunday UTC, and 19:00 Friday to 19:00 Saturday UTC−12:00.

uint genesisTimestamp = 1545462000; // Saturday 22 December 2018 07:00:00 (UTC),

 // pseudonym events scheduled to a random

 // hour on the weekend across all time zones

uint pseudonymEvent;

function setRandomHour() internal {

uint step = eventScheduler.counter % 24;

uint randomNumber = step + labyrinth.generateRandomNumber() % (24 - step);

if(eventScheduler.index[step] == 0) eventScheduler.index[step] = step;

if(eventScheduler.index[randomNumber] == 0) eventScheduler.index[randomNumber]

= randomNumber;

pseudonymEvent = 28 days + eventScheduler.index[randomNumber] - 20 minutes;

eventScheduler.index[randomNumber] = eventScheduler.index[step];

}

Borderless personhood tokens for a global population

The Pseudonym Pairs protocol has no way of distinguishing between people, since it treats any
human being as equivalent, it cannot shut certain people out. It is borderless in that the protocol
cannot know how many people it has counted unless it assumes it is everyone.

References

1) Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf (2008)
2) Teleport - The Network State, https://teleport.org/blog/2015/07/the-network-state/ (2015)
3) Edward Snowden Explains Blockchain to His Lawyer — and the Rest of Us,

https://www.aclu.org/blog/privacy-technology/internet-privacy/edward-snowden-explains-
blockchain-his-lawyer-and-rest-us (2018)

4) P. E. de Puydt, Panarchy, first published in French in the Revue Trimestrielle, Bruxelles,
July 1860.

5) Who is liable for the blockchain?
https://www.avocats-mathias.com/technologies-avancees/who-is-liable-for-the-blockchai
n (2017)

Pseudonym Parties: An Offline Foundation for Online Accountable Pseudonyms
https://pdos.csail.mit.edu/papers/accountable-pseudonyms-socialnets08.pdf (2008)
Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies
https://ieeexplore.ieee.org/document/7966966 (2017)
Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform
https://github.com/ethereum/wiki/wiki/White-Paper (2014)
Ethereum: a Secure Decentralised Generalised Transaction Ledger
https://ethereum.github.io/yellowpaper/paper.pdf (2014)

https://bitcoin.org/bitcoin.pdf
https://teleport.org/blog/2015/07/the-network-state/
https://www.aclu.org/blog/privacy-technology/internet-privacy/edward-snowden-explains-blockchain-his-lawyer-and-rest-us
https://www.aclu.org/blog/privacy-technology/internet-privacy/edward-snowden-explains-blockchain-his-lawyer-and-rest-us
http://www.panarchy.org/depuydt/1860.eng.html
https://www.avocats-mathias.com/technologies-avancees/who-is-liable-for-the-blockchain
https://www.avocats-mathias.com/technologies-avancees/who-is-liable-for-the-blockchain
https://pdos.csail.mit.edu/papers/accountable-pseudonyms-socialnets08.pdf
https://ieeexplore.ieee.org/document/7966966
https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf

Combining collusion attacks with simultaneously attacking the
border
An attack vector I was asked about in Pseudonym Pairs was a combination of collusion attacks
with an attack of the “virtual border”. To be exact, collusion attacks can sustain this many bots:

The success-rate follows an inverse square law, so quite low returns.

A simultaneous attack of the border with bots up to colluders/population of total population
(colluders are able to issue that many border tokens) provides one bot in colluders/population of
the pairs already controlled, an inverse cube law, in my opinion negligible.

If 10% of the entire population attacks their network, they can sustain bots in 1% of all pairs, and
their simultaneous attack of the border will give them an extra bot in 0.1% of all pairs. Since the
attack vectors follow an inverse square law and inverse cube law, when 5% of the entire
population attack their network, they get bots for 0.25% of all pairs, and an extra bot in 0.0125%
of all pairs. Overall, the bots the attackers control increases with collusion/population/2, as they
get only one extra per pair where the border attacks succeed.

Ideally both attack vectors would be combined. The attack requires a large population that
colludes, and is as a heist very low reward.

